Skip to main content

Impact of high-risk of obstructive sleep apnea on chronic cough: data from the Korea National Health and Nutrition Examination Survey

Abstract

Background

Chronic cough is an extremely common clinical symptom of various diseases. However, the relationship between obstructive sleep apnea (OSA) and chronic cough in the general population has not been sufficiently studied.

Methods

Using the 2019 Korean National Health and Nutrition Examination Survey data, we identified a group at high-risk of OSA via the STOP-Bang questionnaire and determined the association between OSA and chronic cough by a regression model.

Results

Of the eligible 4,217 participants, 97.1% and 2.9% were classified into the non-chronic cough and chronic cough groups, respectively. The chronic cough group had higher STOP-Bang scores than those of the group without chronic cough (2.32 ± 1.38 vs. 2.80 ± 1.39; P < 0.001). In the group at high-risk of OSA, 40.4% and 52.0% of participants scored ≥ 3 in STOP-Bang, depending on the absence or presence of chronic cough (P = 0.012), respectively. Chronic cough independently correlated with impaired lung function (forced expiratory volume in one second ≥ 50–<80% predicted value, P = 0.001; <50, P < 0.001), low household income (P = 0.015), and a group at high-risk of OSA (STOP-Bang score 3–4, P = 0.004; 5–8, P < 0.001). Obesity I had a protective role against the occurrence of chronic cough (P = 0.023).

Conclusion

A high-risk for OSA is a significant risk factor for chronic cough. OSA should be considered when evaluating chronic cough patients.

Peer Review reports

Background

Chronic cough is one of the most common reasons for patients to visit respiratory clinics [1,2,3], and when it lasts > 8 weeks can become a serious problem [4]. It exhausts patients and adversely affects their quality of life. Doctors also face difficulties in diagnosing and treating the causes of chronic cough. Although upper airway cough syndrome, cough variant asthma, and reflux disease are the most common causes of chronic cough [5, 6], the accuracy of diagnosis should be re-evaluated based on the response to specific treatments [7]. Moreover, chronic cough could be caused by some conditions, such as various respiratory diseases, drug side effects, psychological or behavioral causes, occupational and environmental influences, peritoneal dialysis, and idiopathic causes [8]. Obstructive sleep apnea (OSA) is known to cause chronic cough [9, 10]. In particular, some studies showed an improvement in chronic cough after applying a continuous positive airway pressure (CPAP) device for the management of OSA in patients with chronic cough [11, 12].

OSA can cause several health problems, including hypertension, stroke, cardiomyopathy, heart failure, diabetes, and heart attacks [13]. Polysomnography is known as the diagnosis of choice for OSA [14, 15]; however, it requires patients to sleep overnight at the hospital and undergo assessments of electroencephalography, eyeball movements, electromyography, respiration, and electrocardiography during sleep. Limitations of time, place, or cost make it difficult to test many people. Several other attempts have been made to identify patients at high-risk of OSA [16,17,18,19,20,21,22], and the STOP-Bang questionnaire is simple and reliable screening tool used to identify groups at high-risk of OSA [23].

This study aimed to investigate the clinical characteristics of participants with chronic cough and determine the associated risk factors for chronic cough. Specifically, it aimed to examine the role of the high-risk of OSA in the prevalence of chronic cough in the general Korean population.

Methods

Data source and participants

The Korean National Health and Nutrition Examination Survey (KNHANES) is a national survey project conducted annually by the Korea Disease Control and Prevention Agency [24]. To represent the Korean population, participants were selected using a rolling sampling design that included complex, stratified, and multistage probability cluster surveys. The KNHANES data are available on the website (https://knhanes.kdca.go.kr/knhanes), and we retrospectively analyzed the survey data for 2019.

A flow diagram of subject recruitment is shown in Fig. 1. Among the 8,110 participants, 4,268 participants (≥40 years) with acceptable STOP-Bang questionnaire results were enrolled. However, 51 participants who could not confirm chronic cough were excluded. Finally, 123 participants who self-reported that they had a cough for over 3 months were enrolled as “participants with chronic cough.” The remaining 4,094 participants were enrolled as “participants without chronic cough.”

Fig. 1
figure 1

Flow diagram of participant recruitment

The KNHANES was approved by the Institutional Review Board at the Korea Disease Control and Prevention Agency, and all participants signed informed consent forms during the survey. This study was approved by the Institutional Review Board of the Gyeongsang National University Changwon Hospital (2022-04-002) and conducted according to the tenets of the Declaration of Helsinki.

Variables

The high-risk of OSA group was assessed using the STOP-Bang questionnaire that comprises eight items: presence of snoring, tiredness or sleepiness, observed apneas or choking, hypertension, obesity (body mass index (BMI) > 30 kg/m2), age (> 50 years), neck circumference (> 40 cm), and sex (male). We applied the adjusted criteria for Asians in a previous study [25], and those with a total score of 3 or higher were classified as a group at high-risk for OSA. In the high-risk group, a group at extremely high-risk for OSA was defined as those with scores of 5 or higher.

Clinical demographic data, such as age, sex, BMI, smoking habit, hypertension, diabetes, and lung function, were collected. Participants were classified into four groups according to age (40–49, 50–59, 60–69, and ≥ 70 years) and five groups according to the Asian-Pacific BMI classification (underweight, < 18.5; normal weight, 18.5–22.9; overweight, 23–24.9; obese I, 25–29.9; and obese II, ≥ 25.0) [26]. Ever-smoker was defined as a person who had smoked 100 cigarettes or more in his/her lifetime. Hypertension was defined as having been diagnosed with hypertension by a physician, being treated for hypertension, or having had a measured systolic blood pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90 mmHg. Diabetes was defined as a fasting blood glucose level of 126 or higher or having been diagnosed or treated by a doctor. Lung function tests were performed by trained healthcare workers using a rolling dry-seal spirometer (Vmax series 2130; SensorMedics Corp., Yorba Linda, CA, USA), according to the guidelines [27]. The past-history of asthma, allergic rhinitis, and sinusitis in the KNHANES health questionnaire was also reviewed.

Socioeconomic factors, including household income level, economic activity, and education level, were reviewed. Household income levels were classified into four categories: low income (≤ lowest quartile), middle–low income, middle–high, and high income. The economic activities of the participants were divided into employed and unemployed (or economically inactive) states. Educational level was classified as middle school or less (9 years of education or less) and high school education or higher.

Statistical analysis

Clinical and socioeconomic demographic variables were compared between participants with and without chronic cough. Continuous variables were presented as median and interquartile ranges (IQRs), and analyzed between the two groups using the Mann-Whitney U test. Categorical variables, expressed as numbers and percentages of participants, were compared using the chi-squared test. Risk factors for chronic cough were analyzed using a logistic regression model. Statistically significant variables with a P value < 0.20 in univariate analysis were entered into the multivariate analysis. In the analysis, backward stepwise logistic regression using the likelihood ratio test was applied to determine independent factors related to chronic cough. Statistical analysis was performed using SPSS version 24.0 (SPSS Inc., Chicago, IL, USA).

Results

Characteristics of the study participants

The baseline characteristics of the enrolled participants are shown in Table 1. The 4,217 participants had a median age of 59.0 (IQRs, 50–69) years, of which 42.5% were male. The median BMI was 23.8 (IQRs, 21.8–26.1) kg/m2, and only 2.8% of all participants had a normal body weight. A total of 1,651 (39.2%) participants had an ever-smoking history, and 629 (14.9%) participants were current smokers. Of the total participants, 2.9%, 11.6%, and 5.5% had a history of asthma, allergic rhinitis, and sinusitis, respectively. Moreover, 31.8%, 26.2%, and 42.0% had normal blood pressure, pre-hypertension, and hypertension, respectively. Diabetes and pre-diabetes were observed in 18.6% and 49.1% of participants, respectively. The pulmonary function characteristics of the participants were as follows: the median forced vital capacity (FVC), forced expiratory volume in one second (FEV1), and FEV1/FVC values were 87.4 (IQRs, 79.6–95.5)% of the predicted value, 87.6 (IQRs, 79.4–95.8)% of the predicted value, and 0.78 (IQRs, 0.74–0.82), respectively. Regarding socioeconomic factors, low household income accounted for 22.9% of the total, and the unemployed or economically inactive population accounted for 41.1% of the total participants. Of the participants, 37.3% had less than 9 years of lower educational level.

Table 1 Baseline characteristics

Patients in the chronic cough group were older than those in the group without chronic cough (P < 0.001). There was no difference in the distribution of sex, BMI, and prevalence of hypertension between the two groups (P > 0.05). Participants with a chronic cough had a higher smoking history (P = 0.049) and a higher prevalence of diabetes (P < 0.001). A history of asthma was more common in the chronic cough group (P < 0.001), but the frequencies of allergic rhinitis and sinusitis did not differ between the two groups. Overall, compared with 74.4% of participants without chronic cough, only 53.4% of participants with chronic cough had normal lung function (P < 0.001). Participants with chronic cough had a lower educational background (P = 0.038), household income level (P < 0.001), and economic activity (P < 0.001) than those without chronic cough.

Group at high-risk of OSA

The distribution of the STOP-Bang questionnaire results is shown in Fig. 2; Table 2. The total score of the STOP-Bang questionnaire was median 2.0 (IQRs, 1.0–3.0; mean + standard errors, 2.33 ± 1.38) and the chronic cough group had a higher score than the other group without chronic cough (P < 0.001). The group at high-risk of OSA, with a score of 3 or higher, comprised 52% and 40.4% of all participants, depending on the presence or absence of chronic cough (P = 0.012). In participants with chronic cough, the frequency of group at extremely high-risk for OSA was higher than in participants without the symptom (P = 0.005).

Fig. 2
figure 2

Distribution of total STOP-Bang questionnaire score

Table 2 Group at high-risk for OSA by the STOP-BANG questionnaire

Among the eight items of the STOP-Bang questionnaire, the presence of snoring, tiredness (or sleepiness), and older age (over 50 years old) showed differences between the groups with and without chronic cough. Persons with these three items were more common in the chronic cough group. However, there were no significant differences in the observed apneas (choking), hypertension, obesity, thick neck circumference (> 40 cm), and sex.

Association between high-risk of OSA and chronic cough

The risk factors associated with chronic cough are shown in Table 3. In the univariate analysis, old age (60–69 years, P = 0.023; ≥70, P = 0.001), current smoking (P < 0.001), asthma history (P < 0.001), poor lung function (FEV1 ≥ 50–<80, P < 0.001; <50, P < 0.001), low household income (P < 0.001), low-grade educational level (P = 0.036), reduced economic activity (P < 0.001), and an extremely high-risk of OSA (P = 0.001) were associated with chronic cough. There was no relationship between chronic cough and sex, BMI, history of allergic rhinitis or sinusitis, hypertension, or diabetes.

Table 3 Risk factors for chronic cough

Subsequently, multivariate analysis showed that advanced age (≥ 70 years, P = 0.014), current smoking status (P < 0.001), asthma history (P = 0.026), poor lung function (FEV1 ≥ 50 to < 80, P = 0.003; <50, P < 0.002), impaired economic activity (P = 0.031), and a high-risk of OSA (STOP-Bang score 3–4, P = 0.007; 5–8, P < 0.001) were associated with chronic cough (Nagelkerke-R2: 0.124, Hosmer–Lemeshow Goodness-of-fit: P = 0.281). Conversely, obesity I showed a negative relationship with the occurrence of chronic cough (P = 0.023). The risk-adjusted analysis showed that household income and education levels lost their relationship with chronic cough.

Discussion

We determined the prevalence of chronic cough to be 2.9%, which is lower than that reported in previous studies. Globally, the prevalence of chronic cough varies from 2 to 18% [28]. The reason for such a large deviation was the variability of the definition of chronic cough as well as the different distribution of age in each study [29]. In the present study, cough lasting for more than 3 months was defined as a chronic cough. This is the most commonly applied definition in previous studies [28]. However, in other studies, chronic cough was also defined as cough for more than 2 months, cough for more than 3 months for two consecutive years, and cough and phlegm for more than 3 months for two consecutive years. Another study reported an increase in prevalence according to Caucasians or region of origin [29], but we investigated only the general Korean population. A previous study using 2010–2012 KNHANES data reported that the prevalence of chronic cough in Korea as 2.6% [30], similar to our results. Therefore, the prevalence of chronic cough in the general Korean population was lower than that in other countries.

The prevalence of OSA, a cause of chronic cough, is difficult to determine in patients with a chronic cough. According to a recent European study, 5.4% of the chronic cough group self-reported that they had OSA, which was significantly higher than 1.9% of participants who did not complain of chronic cough symptoms [31]. We showed that 52.0% of the patients in the chronic cough group were classified as a group at high-risk for OSA. The proportion of patients with a high-risk of OSA was significantly higher than that of patients without a chronic cough.

Meanwhile, 40.8% of the enrolled participants were identified as high-risk for OSA. Jeon et al. showed that the group at high-risk of OSA was 30.8% of the total participants in a study conducted at a hospital in Korea [25]. Compared to our study, the study enrolled young adults (≥20 years), and the sample size was small. They also reported that the STOP-Bang questionnaire had a higher diagnostic performance in OSA screening than the Berlin Questionnaire or the four-variable screening tool. Based on a preliminary study, the items of the STOP-Bang questionnaire were included in the 2019 KNHANES for the first time by the Korea Disease Control and Prevention Agency. Therefore, this study was the first to determine the frequency of individuals at high-risk for OSA in the general Korean population.

Previous studies have shown that the prevalence of chronic cough is significantly increased in the elderly [29, 31,32,33]. In a study on the general Korean population, age over 65 years was also reported as one of the risk factors for chronic cough [30]. In the present study, univariate analysis also showed an increased risk of chronic cough in the elderly group aged 60 years or older, and statistical significance was maintained in the risk-adjusted analysis for those aged ≥70 years.

We showed that economic activity is an independent risk factor for chronic cough. It was found that unemployed or non-job seekers were more vulnerable to chronic coughs than those working. However, household income and educational level were not risk factors for chronic cough in this study. There are various reports on the role of socioeconomic factors in chronic cough. A recent study found that low socioeconomic status contributed to an increased prevalence of chronic cough [31, 34]. In a study of young adults in Italy, socioeconomic status according to occupation had an effect on the prevalence of chronic cough [35]. In a German study, neither income nor education level affected the prevalence of chronic cough; however, as in our study, employment status was associated with chronic cough [32]. However, blue-collar occupation or high household income had no significant effect on chronic cough in another study [30].

We demonstrated that airflow limitation is one of the most powerful risk factors for chronic cough. In particular, participants with less than 50% of the predicted value of FEV1 showed a five-fold higher risk of chronic cough. According to a recent Canadian study, the incidence of chronic cough was higher at a lower predicted value of FEV1 [29]. Furthermore, participants with a history of asthma had more complaints of chronic coughing. This pattern was consistent with the findings of previous studies. In studies in Austria, Germany, Canada, the Netherlands, Finland, Denmark, and Korea, asthma has been identified as an important association with an increase in chronic cough [29,30,31,32,33, 36, 37]. Recent systematic reviews have shown that asthma is a strong risk factor for chronic cough [34].

Epidemiological studies have shown that obesity is associated with chronic coughs [38,39,40]. Indeed, chronic cough in patients with asthma and reflux disease plays an essential role in the onset and severity of symptoms and treatment response. However, in the present study, participants belonging to obese class I had a significantly lower risk of chronic cough. It is difficult to explain the exact mechanism or cause, but there is a phenomenon in which obesity causes profit, as in the present study. In some cardiovascular diseases, overweight or obese patients may have a better prognosis; this phenomenon is known as the “obesity paradox” [41]. They suggested that cardiorespiratory fitness is a more fundamental factor than BMI is. Further, the evaluation of body composition compartments and the presence of metabolic derangements may be better indicators of cardiovascular disease risk than BMI alone.

In the present study, we showed that chronic cough was three times more common in current smokers. Several previous studies have also reported that current smoking is associated with chronic cough [29, 32, 34,35,36]. Chronic bronchitis is the most common cause of coughing in smokers is known as chronic bronchitis [42]. Smoking cessation is the most effective treatment for coughing due to chronic bronchitis, which improves cough in approximately 90% of patients [43, 44].

Limitations

Our study had some limitations. As it was conducted in the general population across the country, OSA could not be diagnosed using polysomnography. Since the polysomnography test is expensive and time-consuming, the group at high-risk for OSA was classified using the STOP-Bang questionnaire and its association with chronic cough was analyzed. Therefore, there may be limitations in determining the relationship between OSA and chronic cough. It is also difficult to determine whether a cause-effect relationship exists. Due to the COVID-19 pandemic, lung function tests that could cause droplet infection and concurrent questions about chronic coughs were excluded from the 2020 KNHANES. Therefore, the analysis was reduced to a one-year cross-sectional study. There were no data on past history or current prevalence of reflux disease in the 2019 KNHANES. Therefore, an analysis of reflux disease and chronic cough, a common cause of chronic cough, was not conducted. In addition, the 2019 KNHANES do not have sufficient data on respiratory illness (ex. bronchiectasis, interstitial lung disease), the full history of taking medicine, and past occupational exposure history, because it is a study with the general population. The chronic cough group accounted for only 2.9% of the total participants, and the size of the two groups was asymmetry. This imbalance may have influenced the study results. Nevertheless, this study has high reliability and representativeness as it uses data from a national survey conducted by a national institution.

Conclusion

Chronic cough accounted for 2.9% of the total number of participants. In the participants with chronic cough, the group at high-risk for OSA was confirmed to be 52%, which is significantly higher than 40.4% of those who did not complain of chronic cough. In the risk-adjusted analysis, advanced age, current smoker, asthma history, impaired lung function, inactive economic activity, a high-risk for OSA, and obesity class I (negative correlation only) were identified as factors related to chronic cough. Therefore, when assessing patients with chronic cough, it is necessary to check whether they are at high-risk for OSA or exhibit symptoms of OSA.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request. And, raw database of the KNHANES is available on the Korea Disease Control and Prevention Agency website (https://knhanes.kdca.go.kr/knhanes).

References

  1. Irwin RS, Curley FJ, French CL. Chronic cough. The spectrum and frequency of causes, key components of the diagnostic evaluation, and outcome of specific therapy. Am Rev Respir Dis. 1990;141:640–7.

    Article  CAS  PubMed  Google Scholar 

  2. French CL, Irwin RS, Curley FJ, Krikorian CJ. Impact of chronic cough on quality of life. Arch Intern Med. 1998;158:1657–61.

    Article  CAS  PubMed  Google Scholar 

  3. Song DJ, Song WJ, Kwon JW, Kim GW, Kim MA, Kim MY, et al. KAAACI evidence-based clinical practice guidelines for chronic cough in adults and children in Korea. Allergy Asthma Immunol Res. 2018;10:591–613.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Andrani F, Aiello M, Bertorelli G, Crisafulli E, Chetta A. Cough, a vital reflex. mechanisms, determinants and measurements. Acta Biomed. 2019;89:477–80.

    PubMed  Google Scholar 

  5. Morice A. Chronic cough: epidemiology. Chronic Respir Dis. 2008;5:43–7.

    Article  CAS  Google Scholar 

  6. Palombini BC, Villanova CA, Araújo E, Gastal OL, Alt DC, Stolz DP, et al. A pathogenic triad in chronic cough: asthma, postnasal drip syndrome, and gastroesophageal reflux disease. Chest. 1999;116:279–84.

    Article  CAS  PubMed  Google Scholar 

  7. Kwon JW, Moon JY, Kim SH, Song WJ, Kim MH, Kang MG, et al. Reliability and validity of a Korean version of the Leicester cough questionnaire. Allergy Asthma Immunol Res. 2015;7:230–3.

    Article  PubMed  Google Scholar 

  8. Joo H, Moon JY, An TJ, Choi H, Park SY, Yoo H, et al. Revised Korean cough guidelines, 2020: recommendations and summary statements. Tuberc Respir Dis (Seoul). 2021;84:263–73.

    Article  Google Scholar 

  9. Birring SS, Ing AJ, Chan K, Cossa G, Matos S, Morgan MD, et al. Obstructive sleep apnoea: a cause of chronic cough. Cough. 2007;3:7.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sundar KM, Daly SE, Pearce MJ, Alward WT. Chronic cough and obstructive sleep apnea in a community-based pulmonary practice. Cough. 2010;6:2.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sundar KM, Daly SE, Willis AM. A longitudinal study of CPAP therapy for patients with chronic cough and obstructive sleep apnoea. Cough. 2013;9:19.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sundar KM, Willis AM, Smith S, Hu N, Kitt JP, Birring SS. A randomized, controlled, pilot study of CPAP for patients with chronic cough and obstructive sleep apnea. Lung. 2020;198:449–57.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Javaheri S, Barbe F, Campos-Rodriguez F, Dempsey JA, Khayat R, Javaheri S, et al. Sleep apnea: types, mechanisms, and clinical cardiovascular consequences. J Am Coll Cardiol. 2017;69:841–58.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Qaseem A, Dallas P, Owens DK, Starkey M, Holty JE, Shekelle P, et al. Diagnosis of obstructive sleep apnea in adults: a clinical practice guideline from the American College of Physicians. Ann Intern Med. 2014;161:210–20.

    Article  PubMed  Google Scholar 

  15. Epstein LJ, Kristo D, Strollo PJ Jr, Friedman N, Malhotra A, Patil SP, et al. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J Clin Sleep Med. 2009;5:263–76.

    Article  PubMed  Google Scholar 

  16. Ramachandran SK, Josephs LA. A meta-analysis of clinical screening tests for obstructive sleep apnea. Anesthesiology. 2009;110:928–39.

    Article  PubMed  Google Scholar 

  17. Abrishami A, Khajehdehi A, Chung F. A systematic review of screening questionnaires for obstructive sleep apnea. Can J Anaesth. 2010;57:423–38.

    Article  PubMed  Google Scholar 

  18. American Society of Anesthesiologists Task Force on Perioperative. Management of patients with obstructive sleep apnea. Practice guidelines for the perioperative management of patients with obstructive sleep apnea: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Management of patients with obstructive sleep apnea. Anesthesiology. 2014;120:268–86.

    Google Scholar 

  19. Netzer NC, Stoohs RA, Netzer CM, Clark K, Strohl KP. Using the Berlin Questionnaire to identify patients at risk for the sleep apnea syndrome. Ann Intern Med. 1999;131:485–91.

    Article  CAS  PubMed  Google Scholar 

  20. Haraldsson PO, Carenfelt C, Knutsson E, Persson HE, Rinder J. Preliminary report: Validity of symptom analysis and daytime polysomnography in diagnosis of sleep apnea. Sleep. 1992;15:261–3.

    Article  CAS  PubMed  Google Scholar 

  21. Douglass AB, Bornstein R, Nino-Murcia G, Keenan S, Miles L, Zarcone VP Jr, et al. The sleep disorders questionnaire. I: creation and multivariate structure of SDQ. Sleep. 1994;17:160–7.

    Article  CAS  PubMed  Google Scholar 

  22. Sharma SK, Kumpawat S, Banga A, Goel A. Prevalence and risk factors of obstructive sleep apnea syndrome in a population of Delhi, India. Chest. 2006;130:149–56.

    Article  PubMed  Google Scholar 

  23. Nagappa M, Liao P, Wong J, Auckley D, Ramachandran SK, Memtsoudis S, et al. Validation of the STOP-Bang questionnaire as a screening tool for obstructive sleep apnea among different populations: A systematic review and meta-analysis. PLOS ONE. 2015;10:e0143697.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kweon S, Kim Y, Jang MJ, Kim Y, Kim K, Choi S, et al. Data resource profile: the Korea National Health and Nutrition Examination Survey (KNHANES). Int J Epidemiol. 2014;43:69–77.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jeon HJ, Bang YR, Yoon IY. A validation study on three screening questionnaires for obstructive sleep apnea in a Korean community sample. Sleep Breath. 2019;23:969–77.

    Article  PubMed  Google Scholar 

  26. Lim JU, Lee JH, Kim JS, Hwang YI, Kim TH, Lim SY, et al. Comparison of World Health Organization and Asia-Pacific body mass index classifications in COPD patients. Int J Chronic Obstruct Pulm Dis. 2017;12:2465–75.

    Article  CAS  Google Scholar 

  27. Celli BR, MacNee W, ATS/ERS Task Force. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J. 2004;23:932–46.

    Article  CAS  PubMed  Google Scholar 

  28. Song WJ, Chang YS, Faruqi S, Kim JY, Kang MG, Kim S, et al. The global epidemiology of chronic cough in adults: a systematic review and meta-analysis. Eur Respir J. 2015;45:1479–81.

    Article  PubMed  Google Scholar 

  29. Satia I, Mayhew AJ, Sohel N, Kurmi O, Killian KJ, O’Byrne PM, et al. Prevalence, incidence and characteristics of chronic cough among adults from the Canadian Longitudinal Study on Aging. ERJ Open Res. 2021;7:00160–2021.

  30. Kang MG, Song WJ, Kim HJ, Won HK, Sohn KH, Kang SY, et al. Point prevalence and epidemiological characteristics of chronic cough in the general adult population: the Korean National Health and Nutrition Examination survey 2010–2012. Medicine. 2017;96:e6486.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Abozid H, Baxter CA, Hartl S, Braun E, Salomonsson S, Breyer-Kohansal R, et al. Distribution of chronic cough phenotypes in the general population: a cross-sectional analysis of the lead cohort in Austria. Respir Med. 2022;192:106726.

    Article  CAS  PubMed  Google Scholar 

  32. Virchow JC, Li VW, Fonseca E, Salmen H, Martin A, Brady J, et al. Chronic cough in Germany: results from a general-population survey. ERJ Open Res. 2022;8:00420–2021.

  33. Lätti AM, Pekkanen J, Koskela HO. Defining the risk factors for acute, subacute and chronic cough: a cross-sectional study in a Finnish adult employee population. BMJ Open. 2018;8:e022950.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang J, Perret JL, Chang AB, Idrose NS, Bui DS, Lowe AJ, et al. Risk factors for chronic cough in adults: a systematic review and meta-analysis. Respirol Vic: Carlton Book Co. 2022;27:36–47.

    Article  Google Scholar 

  35. Cerveri I, Accordini S, Corsico A, Zoia MC, Carrozzi L, Cazzoletti L, et al. Chronic cough and phlegm in young adults. Eur Respir J. 2003;22:413–7.

    Article  CAS  PubMed  Google Scholar 

  36. Arinze JT, de Roos EW, Karimi L, Verhamme KMC, Stricker BH, Brusselle GG. Prevalence and incidence of, and risk factors for chronic cough in the adult population: the Rotterdam Study. ERJ Open Res. 2020;6:00300–2019.

  37. Çolak Y, Nordestgaard BG, Laursen LC, Afzal S, Lange P, Dahl M. Risk factors for chronic cough among 14,669 individuals from the general population. Chest. 2017;152:563–73.

    Article  PubMed  Google Scholar 

  38. Guilleminault L. Chronic cough and obesity. Pulm Pharmacol Ther. 2019;55:84–8.

    Article  CAS  PubMed  Google Scholar 

  39. Landt EM, Çolak Y, Nordestgaard BG, Lange P, Dahl M. Risk and impact of chronic cough in obese individuals from the general population. Thorax. 2022;77:223–30.

    Article  PubMed  Google Scholar 

  40. Descazeaux M, Brouquières D, Didier A, Lescouzères M, Napoléon MF, Escamilla R, et al. Obesity predicts treatment response to proton pump inhibitor therapy in patients with chronic cough. Lung. 2020;198:441–8.

    Article  CAS  PubMed  Google Scholar 

  41. Elagizi A, Kachur S, Lavie CJ, Carbone S, Pandey A, Ortega FB, et al. An overview and update on obesity and the obesity paradox in cardiovascular diseases. Prog Cardiovasc Dis. 2018;61:142–50.

    Article  PubMed  Google Scholar 

  42. Malesker MA, Callahan-Lyon P, Madison JM, Ireland B, Irwin RS, CHEST Expert Cough Panel. Chronic cough due to stable chronic bronchitis: CHEST Expert Panel Report: CHEST Expert Panel Report. Chest. 2020;158:705–18.

    Article  PubMed  Google Scholar 

  43. Kanner RE, Connett JE, Williams DE, Buist AS. Effects of randomized assignment to a smoking cessation intervention and changes in smoking habits on respiratory symptoms in smokers with early chronic obstructive pulmonary disease: the Lung Health Study. Am J Med. 1999;106:410–6.

    Article  CAS  PubMed  Google Scholar 

  44. Wynder EL, Kaufman PL, Lesser RL. A short-term follow-up study on ex-cigarette smokers. With special emphasis on persistent cough and weight gain. Am Rev Respir Dis. 1967;96:645–55.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.co.kr) for English language editing.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: THK, HCK; Administrative support: HCK; Collection and assembly of data: THK; Validation: IRH; Data analysis and interpretation: All authors; Manuscript writing: All authors; All authors read and approved the final manuscript

Corresponding author

Correspondence to Ho Cheol Kim.

Ethics declarations

Ethics approval and consent to participate

The KNHANES was approved by the Institutional Review Board at the Korea Disease Control and Prevention Agency (2018-01-03-C-A), and all participants signed informed consent forms during the survey. This study was approved by the Institutional Review Board of the Gyeongsang National University Changwon Hospital (2022-04-002) and conducted according to the tenets of the Declaration of Helsinki.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, T.H., Heo, I.R. & Kim, H.C. Impact of high-risk of obstructive sleep apnea on chronic cough: data from the Korea National Health and Nutrition Examination Survey. BMC Pulm Med 22, 419 (2022). https://doi.org/10.1186/s12890-022-02222-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s12890-022-02222-5

Keywords

  • Chronic cough
  • Obstructive sleep apnea
  • Risk factors
  • Respiratory function tests
  • Obesity