Dacre JC, Goldman M. Toxicology and pharmacology of the chemical warfare agent sulfur mustard. Pharmacol Rev. 1996;48(2):289–326.
CAS
PubMed
Google Scholar
Khateri S, Ghanei M, Keshavarz S, Soroush M, Haines D. Incidence of lung, eye, and skin lesions as late complications in 34,000 Iranians with wartime exposure to mustard agent. J Occup Environ Med. 2003;45(11):1136–43.
Article
PubMed
Google Scholar
Salamati P, Saghafinia M, Abdollahi M. A review on delayed toxic effects of sulfur mustard in Iranian veterans. DARU J Pharmaceut Sci. 2012;20(1):1–8.
Google Scholar
Ghanei M, Harandi AA. Mustard lung: diagnosis and treatment of respiratory disorders in sulfur-mustard injured patients. London: Academic Press; 2016.
Google Scholar
Najafi A, Ghanei M, Jamalkandi SA. Airway remodeling: systems biology approach, from bench to bedside. Technol Health Care. 2016;24(6):811–9.
Article
PubMed
Google Scholar
Ebadi A, Moradian T, Mollahadi M, Saeed Y, Refahi AA. Quality of life in Iranian chemical warfare veteran’s. Iran Red Crescent Med J. 2014;16(5):e5323.
PubMed
PubMed Central
Google Scholar
Tahmasbpour E, Ghanei M, Qazvini A, Vahedi E, Panahi Y. Gene expression profile of oxidative stress and antioxidant defense in lung tissue of patients exposed to sulfur mustard. Mutat Res/Genetic Toxicol Environ Mutagenesis. 2016;800:12–21.
Article
Google Scholar
Emad A, Emad Y. Increased in CD8 T lymphocytes in the BAL fluid of patients with sulfur mustard gas-induced pulmonary fibrosis. Respir Med. 2007;101(4):786–92.
Article
PubMed
Google Scholar
Emad A, Emad Y. CD4/CD8 ratio and cytokine levels of the BAL fluid in patients with bronchiectasis caused by sulfur mustard gas inhalation. J Inflamm. 2007;4(1):1–11.
Article
Google Scholar
Tahmasbpour Marzony E, Ghanei M, Panahi Y. Oxidative stress and altered expression of peroxiredoxin genes family (PRDXS) and sulfiredoxin-1 (SRXN1) in human lung tissue following exposure to sulfur mustard. Exp Lung Res. 2016;42(4):217–26.
Article
CAS
PubMed
Google Scholar
Shahriary A, Mehrani H, Ghanei M, Parvin S. Comparative proteome analysis of peripheral neutrophils from sulfur mustard-exposed and COPD patients. J Immunotoxicol. 2015;12(2):132–9.
Article
CAS
PubMed
Google Scholar
Imani S, Salimian J, Bozorgmehr M, Vahedi E, Ghazvini A, Ghanei M, et al. Assessment of Treg/Th17 axis role in immunopathogenesis of chronic injuries of mustard lung disease. J Recept Signal Transd. 2016;36(5):531–41.
Article
CAS
Google Scholar
Li H, Liu Q, Jiang Y, Zhang Y, Xiao W, Zhang Y. Disruption of th17/treg balance in the sputum of patients with chronic obstructive pulmonary disease. Am J Med Sci. 2015;349(5):392–7.
Article
PubMed
Google Scholar
Xu J-W, Li Y-L, Zhang S-J, Yang W-Q, Nie W-T, Jiang H-Q. Quantitative serum proteomic analysis of essential hypertension using itraq technique. BioMed Res Int. 2017;2017.
Arzoumanian L. What is hemolysis, what are the causes, what are the effects. BD Tech Talk. 2003;2:1–3.
Google Scholar
Timms JF, Arslan-Low E, Gentry-Maharaj A, Luo Z, T’Jampens D, Podust VN, et al. Preanalytic influence of sample handling on SELDI-TOF serum protein profiles. Clin Chem. 2007;53(4):645–56.
Article
CAS
PubMed
Google Scholar
Richards AL, Eckhardt M, Krogan NJ. Mass spectrometry-based protein–protein interaction networks for the study of human diseases. Mol Syst Biol. 2021;17(1):e8792.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen C, Hou J, Tanner JJ, Cheng J. Bioinformatics methods for mass spectrometry-based proteomics data analysis. Int J Mol Sci. 2020;21(8):2873.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grossi F, Rijavec E, Genova C, Barletta G, Biello F, Maggioni C, et al. Serum proteomic test in advanced non-squamous non-small cell lung cancer treated in first line with standard chemotherapy. Br J Cancer. 2017;116(1):36–43.
Article
CAS
PubMed
Google Scholar
Johannsen C, Koehler CJ, Thiede B. Comparison of LFQ and IPTL for protein identification and relative quantification. Molecules. 2021;26(17):5330.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuleš J, Bilić P, Horvatić A, Kovačević A, Guillemin N, Ljubić BB, et al. Serum proteome profiling in canine chronic valve disease using a TMT-based quantitative proteomics approach. J Proteomics. 2020;223: 103825.
Article
PubMed
Google Scholar
Mostafaei S, Borna H, Emamvirdizadeh A, Arabfard M, Ahmadi A, Salimian J, et al. Causal Path of COPD Progression-Associated Genes in Different Biological Samples. COPD J Chronic Obstruct Pulmonary Dis. 2022;19(1):290–9.
Article
Google Scholar
Aronson JK. Biomarkers and surrogate endpoints. Br J Clin Pharmacol. 2005;59(5):491.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang DL, Xiao C, Fu G, Wang X, Li L. Identification of potential serum biomarkers for breast cancer using a functional proteomics technology. Biomarker Res. 2017;5(1):1–10.
Article
Google Scholar
Sun Y, Liu S, Qiao Z, Shang Z, Xia Z, Niu X, et al. Systematic comparison of exosomal proteomes from human saliva and serum for the detection of lung cancer. Anal Chim Acta. 2017;982:84–95.
Article
CAS
PubMed
Google Scholar
Crimmins EM, Shim H, Zhang YS, Kim JK. Differences between men and women in mortality and the health dimensions of the morbidity process. Clin Chem. 2019;65(1):135–45.
Article
CAS
PubMed
Google Scholar
Parker K, Horowitz JM, Stepler R. On gender differences, no consensus on nature vs. nurture (2017)
Smyth GK. Limma: linear models for microarray data. Bioinformatics and computational biology solutions using R and Bioconductor. Springer; 2005. p. 397-420.
Nobakht M. Gh BF, Hasani Nourian Y, Arabfard M. Identification of shared gene signatures in different stages of nonalcoholic fatty liver disease using integrated microarray datasets. 2022;22(1):e122362.
Franz M, Rodriguez H, Lopes C, Zuberi K, Montojo J, Bader GD, et al. GeneMANIA update 2018. Nucleic Acids Res. 2018;46(W1):W60–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pathan M, Keerthikumar S, Ang CS, Gangoda L, Quek CYJ, Williamson NA, et al. FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics. 2015;15(15):2597–601.
Article
CAS
PubMed
Google Scholar
Fonseka P, Pathan M, Chitti SV, Kang T, Mathivanan S. FunRich enables enrichment analysis of OMICs datasets. J Mol Biol. 2021;433(11): 166747.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, et al. KEGG for linking genomes to life and the environment. Nucleic acids Res. 2007;36(11):D480–4.
Article
PubMed
PubMed Central
Google Scholar
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mehrani H, Ghanei M, Aslani J, Tabatabaei Z. Plasma proteomic profile of sulfur mustard exposed lung diseases patients using 2-dimensional gel electrophoresis. Clin Proteomics. 2010;8(1):1–11.
Article
Google Scholar
Koba T, Takeda Y, Narumi R, Shiromizu T, Nojima Y, Ito M, et al. Proteomics of serum extracellular vesicles identifies a novel COPD biomarker, fibulin-3 from elastic fibres. ERJ Open Res. 2021;7(1):00658.
Article
PubMed
PubMed Central
Google Scholar
Serban KA, Pratte KA, Bowler RP. Protein biomarkers for COPD outcomes. Chest. 2021;159(6):2244–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mehrani H, Ghanei M, Aslani J, Golmanesh L. Bronchoalveolar lavage fluid proteomic patterns of sulfur mustard-exposed patients. PROTEOM Clin Appl. 2009;3(10):1191–200.
Article
CAS
Google Scholar
Verrills NM, Irwin JA, Yan He X, Wood LG, Powell H, Simpson JL, et al. Identification of novel diagnostic biomarkers for asthma and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;183(12):1633–43.
Article
CAS
PubMed
Google Scholar
Bozinovski S, Hutchinson A, Thompson M, MacGregor L, Black J, Giannakis E, et al. Serum amyloid a is a biomarker of acute exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;177(3):269–78.
Article
CAS
PubMed
Google Scholar
Rana GSJB, York TP, Edmiston JS, Zedler BK, Pounds JG, Adkins JN, et al. Proteomic biomarkers in plasma that differentiate rapid and slow decline in lung function in adult cigarette smokers with chronic obstructive pulmonary disease (COPD). Anal Bioanal Chem. 2010;397(5):1809–19.
Article
CAS
PubMed
Google Scholar
Merali S, Barrero CA, Bowler RP, Chen DE, Criner G, Braverman A, et al. Analysis of the plasma proteome in COPD: Novel low abundance proteins reflect the severity of lung remodeling. COPD J Chronic Obstruct Pulmonary Dis. 2014;11(2):177–89.
Article
Google Scholar
Goldstein AL, Kleinman HK. Advances in the basic and clinical applications of thymosin β4. Expert Opin Biol Ther. 2015;15(sup1):139–45.
Article
CAS
Google Scholar
Li H, Wang Y, Hu X, Ma B, Zhang H. Thymosin beta 4 attenuates oxidative stress-induced injury of spinal cord-derived neural stem/progenitor cells through the TLR4/MyD88 pathway. Gene. 2019;707:136–42.
Article
CAS
PubMed
Google Scholar
Xiong Y, Mahmood A, Meng Y, Zhang Y, Zhang ZG, Morris DC, et al. Neuroprotective and neurorestorative effects of thymosin β4 treatment following experimental traumatic brain injury. Ann N Y Acad Sci. 2012;1270(1):51–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wirsching H-G, Krishnan S, Florea A-M, Frei K, Krayenbühl N, Hasenbach K, et al. Thymosin beta 4 gene silencing decreases stemness and invasiveness in glioblastoma. Brain. 2014;137(2):433–48.
Article
PubMed
Google Scholar
Kim J, Wang S, Hyun J, Choi SS, Cha H, Ock M, et al. Hepatic stellate cells express thymosin Beta 4 in chronically damaged liver. PLoS ONE. 2015;10(3): e0122758.
Article
PubMed
PubMed Central
Google Scholar
Young JD, Lawrence AJ, MacLean AG, Leung BP, McInnes IB, Canas B, et al. Thymosin β 4 sulfoxide is an anti-inflammatory agent generated by monocytes in the presence of glucocorticoids. Nat Med. 1999;5(12):1424–7.
Article
CAS
PubMed
Google Scholar
Banerjee I, Zhang J, Moore-Morris T, Lange S, Shen T, Dalton ND, et al. Thymosin beta 4 is dispensable for murine cardiac development and function. Circ Res. 2012;110(3):456–64.
Article
CAS
PubMed
Google Scholar
Bauche IB, El Mkadem SA, Pottier A-M, Senou M, Many M-C, Rezsohazy R, et al. Overexpression of adiponectin targeted to adipose tissue in transgenic mice: impaired adipocyte differentiation. Endocrinology. 2007;148(4):1539–49.
Article
CAS
PubMed
Google Scholar
Fisman EZ, Tenenbaum A. Adiponectin: a manifold therapeutic target for metabolic syndrome, diabetes, and coronary disease? Cardiovasc Diabetol. 2014;13(1):1–10.
Article
Google Scholar
Jamshidi V, Gh NM, Fatemeh B, Parvin S, Bagheri H, Ghanei M, et al. Proteomics analysis of chronic skin injuries caused by mustard gas. BMC Med Genomics. 2022;15(1):1–12.
Article
Google Scholar
Parvin S, Shahriary A, Aghamollaei H, Gh B, Bagheri H, Ghanei M, et al. Tear proteomics analysis of patient suffered from delayed mustard gas keratopathy. Proteome Sci. 2022;20(1):1–10.
Article
Google Scholar