Statement on sarcoidosis. Joint Statement of the American Thoracic Society (ATS), the European Respiratory Society (ERS) and the World Association of Sarcoidosis and Other Granulomatous Disorders (WASOG) adopted by the ATS Board of Directors and by the ER. Am J Respir Crit Care Med. 1999;160:736–55. http://www.ncbi.nlm.nih.gov/pubmed/10670511.
Article
Google Scholar
Thillai M, Atkins CP, Crawshaw A, Hart SP, Ho LP, Kouranos V, et al. BTS clinical statement on pulmonary sarcoidosis. Thorax. 2021;76:4–20.
Article
PubMed
Google Scholar
Zhang H, Costabel U, Dai H. The Role of Diverse Immune Cells in Sarcoidosis. Front Immunol. 2021;12 November:1–10.
Google Scholar
Erika L. Pearce, Edward J. Pearce. Metabolic pathways in immune cell activation and quiescence. Immunity. 2013;38:633–43.
Article
Google Scholar
Fox CJ, Hammerman PS, Thompson CB. Fuel feeds function: Energy metabolism and the T-cell response. Nat Rev Immunol. 2005;5:844–52.
Article
CAS
PubMed
Google Scholar
Kishton RJ, Sukumar M, Restifo NP. Metabolic regulation of T cell longevity and function in tumor immunotherapy. Cell Metab. 2017;26:94–109.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Brien KL, Finlay DK. Immunometabolism and natural killer cell responses. Nat Rev Immunol. 2019;19:282–90.
Article
PubMed
Google Scholar
Newton R, Priyadharshini B, Turka LA. Immunometabolism of regulatory T cells. Nat Immunol. 2016;17:618–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lochner M, Berod L, Sparwasser T. Fatty acid metabolism in the regulation of T cell function. Trends Immunol. 2015;36:81–91.
Article
CAS
PubMed
Google Scholar
Gutiérrez S, Svahn SL, Johansson ME. Effects of omega-3 fatty acids on immune cells. Int J Mol Sci. 2019;20.
Nagatake T, Kunisawa J. Emerging roles of metabolites of ω3 and ω6 essential fatty acids in the control of intestinal inflammation. Int Immunol. 2019;31:569–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haghikia A, Jörg S, Duscha A, Berg J, Manzel A, Waschbisch A, et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity. 2015;43:817–29.
Article
CAS
PubMed
Google Scholar
Hammer A, Schliep A, Jörg S, Haghikia A, Gold R, Kleinewietfeld M, et al. Impact of combined sodium chloride and saturated long-chain fatty acid challenge on the differentiation of T helper cells in neuroinflammation. J Neuroinflammation. 2017;14:1–9.
Article
Google Scholar
Weatherill AR, Lee JY, Zhao L, Lemay DG, Youn HS, Hwang DH. Saturated and polyunsaturated fatty acids reciprocally modulate dendritic cell functions mediated through TLR4. J Immunol. 2005;174:5390–7.
Article
CAS
PubMed
Google Scholar
van der Does AM, Heijink M, Mayboroda OA, Persson LJ, Aanerud M, Bakke P, et al. Dynamic differences in dietary polyunsaturated fatty acid metabolism in sputum of COPD patients and controls. Biochim Biophys Acta - Mol Cell Biol Lipids. 2019;1864:224–33. doi:https://doi.org/10.1016/j.bbalip.2018.11.012.
Article
CAS
PubMed
Google Scholar
Chu SG, Villalba JA, Liang X, Xiong K, Tsoyi K, Ith B, et al. Palmitic acid-rich high-fat diet exacerbates experimental pulmonary fibrosis by modulating endoplasmic reticulum stress. Am J Respir Cell Mol Biol. 2019;61:737–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scaioli E, Liverani E, Belluzzi A. The imbalance between N-6/N-3 polyunsaturated fatty acids and inflammatory bowel disease: A comprehensive review and future therapeutic perspectives. Int J Mol Sci. 2017;18.
Inoue Y, Inui N, Hashimoto D, Enomoto N, Fujisawa T, Nakamura Y, et al. Cumulative Incidence and Predictors of Progression in Corticosteroid-Naive Patients with Sarcoidosis. PLoS One. 2015;10.
Hunninghake CW, Gilbert S, Pueringer R, Dayton C, Floerchinger C, Helmers R, et al. Outcome of the Treatment for Sarcoidosis. Am J Resp Crit Care. 1994;149:893–8.
Article
CAS
Google Scholar
Huggins JT, Doelken P, Sahn SA, King L, Judson MA. Pleural effusions in a series of 181 outpatients with sarcoidosis. Chest. 2006;129:1599–604.
Article
PubMed
Google Scholar
Hou TY, Rola Barhoumid, Fan Y-Y, Rivera GM, Hannoush RN, McMurray DN, et al. n-3 polyunsaturated fatty acids suppress CD4 + T cell proliferation by altering phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] organization. Biochim Et Biophys Acta-Biomembr. 2016;1858:85–96.
Article
CAS
Google Scholar
Fan Y-Y, Natividad R. Fuentes, Hou TY, Barhoumi R, Li XC, Deutz NEP, et al. Remodelling of primary human CD4 + T cell plasma membrane order by n-3 PUFA. Br J Nutr. 2018;119:139-163-75.
Article
Google Scholar
Chiurchiù V, Alessandro Leuti, Dalli J, Jacobsson A, Battistini L, Maccarrone M, et al. Pro-resolving lipid mediators Resolvin D1, Resolvin D2 and Maresin 1 are critical in modulating T cell responses. Sci Transl Med. 2016;8:353ra111.
Article
PubMed
PubMed Central
Google Scholar
Jeffery L, Fisk HL, Calder PC, Filer A, Raza K, Buckley CD, et al. Plasma levels of eicosapentaenoic acid are associated with anti-TNF responsiveness in rheumatoid arthritis and inhibit the etanercept-driven rise in Th17 cell differentiation in vitro. J Rheumatol. 2017;44:748–56.
Article
CAS
PubMed
Google Scholar
Monk JM, Hou TY, Turk HF, McMurray DN, Chapkin RS. n3 PUFAs reduce mouse CD4 + T-Cell ex vivo polarization into Th17 Cells. J Nutr. 2013;143:1501–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allen MJ, Fan YY, Monk JM, Hou TY, Barhoumi R, McMurray DN, et al. n-3 PUFAs reduce T-helper 17 cell differentiation by decreasing responsiveness to interleukin-6 in isolated mouse splenic CD4 + T cells. J Nutr. 2014;144:1306–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Onodera T, Fukuhara A, Shin J, Hayakawa T, Otsuki M, Shimomura I. Eicosapentaenoic acid and 5-HEPE enhance macrophage-mediated Treg induction in mice. Sci Rep. 2017;7:1–11.
Article
CAS
Google Scholar
Lian M, Luo W, Sui Y, Li Z, Hua J. Dietary n-3 PUFA protects mice from Con a induced liver injury by modulating regulatory T cells and PPAR-γ expression. PLoS One. 2015;10:1–16.
Google Scholar
Woodworth HL, McCaskey SJ, Duriancik DM, Clinthorne JF, Langohr IM, Gardner EM, et al. Dietary fish oil alters T lymphocyte cell populations and exacerbates disease in a mouse model of inflammatory colitis. Cancer Res. 2010;70:7960–9.
Article
CAS
PubMed
Google Scholar
Han SC, Koo DH, Kang NJ, Yoon WJ, Kang GJ, Kang HK, et al. Docosahexaenoic acid alleviates atopic dermatitis by generating tregs and IL-10/TGF-β-modified macrophages via a TGF-β-dependent mechanism. J Invest Dermatol. 2015;135:1556–64. doi:https://doi.org/10.1038/jid.2014.488.
Article
CAS
PubMed
Google Scholar
Aoki T, Narumiya S. Prostaglandin E2-EP2 signaling as a node of chronic inflammation in the colon tumor microenvironment. Inflamm Regen. 2017;37:1–5. doi:https://doi.org/10.1186/s41232-017-0036-7.
Article
CAS
Google Scholar
Kabashima K, Saji T, Murata T, Nagamachi M, Matsuoka T, Segi E, et al. The prostaglandin receptor EP4 suppresses colitis, mucosal damage and CD4 cell activation in the gut. J Clin Invest. 2002;109:883–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maj T, Wang W, Crespo J, Zhang H, Wang W, Zhao L, et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat Immunol. 2018;18:1332–41.
Article
Google Scholar
Iizuka Y, Okuno T, Saeki K, Uozaki H, Okada S, Misaka T, et al. Protective role of the leukotriene B 4 receptor BLT2 in murine inflammatory colitis. FASEB J. 2010;24:4678–90.
CAS
PubMed
Google Scholar
Schwanke RC, Marcon R, Bento AF, Calixto JB. EPA- and DHA-derived resolvins’ actions in inflammatory bowel disease. Eur J Pharmacol. 2016;785:156–64. doi:https://doi.org/10.1016/j.ejphar.2015.08.050.
Article
CAS
PubMed
Google Scholar
Zhang RN, Pan Q, Zhang Z, Cao HX, Shen F, Fan JG. Saturated fatty acid inhibits viral replication in chronic hepatitis B virus infection with nonalcoholic fatty liver disease by toll-like receptor 4-mediated innate immune response. Hepat Mon. 2015;15.
Wang L, Johnson EA. InhibitionofListeriamonocytogenes byFattyAcids and Monoglycerides. Appl Env Microbiol. 1992;58:624–9.
Article
CAS
Google Scholar
Kitahara T, Koyama N, Matsuda J, Aoyama Y, Hirakata Y, Kamihira S, et al. Antimicrobial activity of saturated fatty acids and fatty amines against methicillin-resistant Staphylococcus aureus. Biol Pharm Bull. 2004;27:1321–6.
Article
CAS
PubMed
Google Scholar
Dingwoke EJ, Adamude FA, Chukwuocha CE, Ambi AA, Nwobodo NN, Sallau AB, et al. Inhibition of trypanosoma evansi protein-tyrosine phosphatase by myristic acid analogues isolated from khaya senegalensis and tamarindus indica. J Exp Pharmacol. 2019;11:135–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fischer CL, Drake DR, Dawson D V., Blanchette DR, Brogden KA, Wertz PW. Antibacterial activity of sphingoid bases and fatty acids against gram-positive and gram-negative bacteria. Antimicrob Agents Chemother. 2012;56:1157–61.
Article
CAS
PubMed
PubMed Central
Google Scholar